Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

Abstract Title:

Apigenin inhibits pancreatic stellate cell activity in pancreatitis.

Abstract Source:

J Surg Res. 2015 Feb 19. Epub 2015 Feb 19. PMID: 25799526

Abstract Author(s):

Amy A Mrazek, Laura J Porro, Vandanajay Bhatia, Miriam Falzon, Heidi Spratt, Jia Zhou, Celia Chao, Mark R Hellmich

Article Affiliation:

Amy A Mrazek

Abstract:

BACKGROUND: Chronic pancreatitis (CP) is characterized by recurrent pancreatic injury, resulting in inflammation, necrosis, and fibrosis. There are currently no drugs limiting pancreatic fibrosis associated with CP, and there is a definite need to fill this void in patient care.

MATERIALS AND METHODS: Pancreatitis was induced in C57/BL6 mice using supraphysiologic doses of cerulein, and apigenin treatment (once daily, 50 μg per mouse by oral gavage) was initiated 1 wk into the recurrent acute pancreatitis (RAP) protocol. Pancreata were harvested after 4 wk of RAP. Immunostaining with fibronectin antibody was used to quantify the extent of pancreatic fibrosis. To assess how apigenin may decrease organ fibrosis,we evaluated the effect of apigenin on the proliferation and apoptosis of human pancreatic stellate cells (PSCs) in vitro. Finally, we assessed apigenin's effect on the gene expression in PSCs stimulated with parathyroid hormone-related protein, a profibrotic and proinflammatory mediator of pancreatitis, using reverse transcription-polymerase chain reaction.

RESULTS: After 4 wk of RAP, apigenin significantly reduced the fibrotic response to injury while preserving acinar units. Apigenin inhibited viability and induced apoptosis of PSCs in a time- and dose-dependent manner. Finally, apigenin reduced parathyroid hormone-related protein-stimulated increases in the PSC messenger RNA expression levels of extracellular matrix proteins collagen 1A1 and fibronectin, proliferating cell nuclear antigen, transforming growth factor-beta, and interleukin-6.

CONCLUSIONS: These in vivo and in vitro studies provide novel insights regarding apigenin's mechanism(s) of action in reducing the severity of RAP. Additional preclinical testing of apigenin analogs is warranted to develop a therapeutic agent for patients at risk for CP.

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.