Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

n/a
Abstract Title:

Regulation of sodium currents through oxidation and reduction of thiol residues.

Abstract Source:

Neuroscience. 2000 ;101(1):229-36. PMID: 11068151

Abstract Author(s):

J R Evans, K Bielefeldt

Article Affiliation:

J R Evans

Abstract:

Changes in redox state are involved in several physiological and pathophysiological processes. Previous experiments have demonstrated that nitric oxide can function as a reactive oxygen species, inhibiting neuronal sodium currents by nitrosylation of thiol residues. We hypothesized that nitric oxide and thiol oxidizers similarly modulate voltage-dependent sodium currents. Voltage-dependent sodium currents were studied with the whole-cell patch-clamp technique in NB41A3 neuroblastoma cells. The nitric oxide donor 3-(2-hydroxy-2-nitroso-1-propylhydrazino)-1-propanamine did not affect sodium currents. In contrast, the thiol oxidizers thimerosal and 4,4'-dithiopyridine significantly inhibited sodium currents. The effect of thimerosal persisted after washout, but could be fully reversed by the reducing agent dithiothreitol. Reduced glutathione did not restore the sodium current amplitude when given extracellularly, while intracellular glutathione prevented the inhibitory effect of thimerosal. Pretreatment with the alkylating agent N-ethylmaleimide blocked the inhibitory action of thimerosal. Thiol oxidation caused a shift in the voltage dependence of fast and slow inactivation to more hyperpolarized potentials without concomitant effects on the voltage dependence of activation. Mercaptoethanol and reduced glutathione enhanced sodium currents by shifting the voltage dependence of inactivation to depolarized potentials. These results demonstrate that the oxidation and reduction of thiol residues alters the properties of voltage-sensitive sodium channels and may play an important role in the regulation of membrane excitability.

Study Type : In Vitro Study
Additional Links
Additional Keywords : Vaccine Research : CK(20) : AC(1)
Problem Substances : Thimerosal : CK(618) : AC(151)
Adverse Pharmacological Actions : Excitotoxic : CK(15) : AC(4)

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.