Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

n/a
Article Publish Status: FREE
Abstract Title:

Chrysin ameliorates podocyte injury and slit diaphragm protein loss via inhibition of the PERK-eIF2α-ATF-CHOP pathway in diabetic mice.

Abstract Source:

Acta Pharmacol Sin. 2017 Aug ;38(8):1129-1140. Epub 2017 May 15. PMID: 28502979

Abstract Author(s):

Min-Kyung Kang, Sin-Hye Park, Yun-Ho Kim, Eun-Jung Lee, Lucia Dwi Antika, Dong Yeon Kim, Yean-Jung Choi, Young-Hee Kang

Article Affiliation:

Min-Kyung Kang

Abstract:

Glomerular epithelial podocytes are highly specialized cells that play a crucial role in maintaining normal function of the glomerular filtration barrier via their foot processes. Chrysin (5,7-dihydroxyflavone) is a natural flavonoid found in propolis and mushrooms that has anti-inflammatory, antioxidant and anticancer properties. This study aimed to evaluate the renoprotective effects of chrysin on podocyte apoptotic loss and slit diaphragm protein deficiency in high glucose-exposed podocytes and in db/db mouse kidneys. Exposure to high glucose (33 mmol/L) caused glomerular podocyte apoptosis in vitro, which was dose-dependently attenuated by nontoxic chrysin (1-20μmol/L) through reduction of DNA fragmentation. Chrysin treatment dose-dependently restored the increased Bax/Bcl-2 ratio, and suppressed Apaf-1 induction and the elevated cytochrome c release in high glucose-exposed renal podocytes. In diabetic db/db mice, oral administration of chrysin (10 mg·kg·d, for 10 weeks) significantly attenuated proteinuria, and alleviated the abnormal alterations in glomerular ultrastructure, characterized by apoptotic podocytes and foot process effacement. In addition, this compound improved the induction of slit diaphragm proteins podocin/nephrin in the diabetic glomeruli. Exposure to high glucose elevated the unfolded protein response (UPR) to ER stress in renal podocytes, evidenced by up-regulation of PERK-eIF2α-ATF4-CHOP. Chrysin treatment blocked such ER stress responses pertinent to podocyte apoptosis and reduced synthesis of slit diaphragm proteins in vitro and in vivo. These observations demonstrate that targeting ER stress is an underlying mechanism of chrysin-mediated amelioration of diabetes-associated podocyte injury and dysfunction.

Study Type : Animal Study, In Vitro Study
Additional Links
Pharmacological Actions : Anti-Apoptotic : CK(1620) : AC(932)

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.