Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

n/a
Abstract Title:

Sulforaphane Alleviates Lipopolysaccharide-induced Spatial Learning and Memory Dysfunction in Mice: The Role of BDNF-mTOR Signaling Pathway.

Abstract Source:

Neuroscience. 2018 09 15 ;388:357-366. Epub 2018 Aug 4. PMID: 30086367

Abstract Author(s):

Jie Gao, Bingrui Xiong, Bo Zhang, Shan Li, Niannian Huang, Gaofeng Zhan, Riyue Jiang, Ling Yang, Yeshun Wu, Liying Miao, Bin Zhu, Chun Yang, Ailin Luo

Article Affiliation:

Jie Gao

Abstract:

Peripheral immune activation could cause neuroinflammation, leading to a series of central nervous system (CNS) disorders, such as spatial learning and memory dysfunction. However, its pathogenic mechanism and therapeutic strategies are not yet determined. The present study aimed to investigate the therapeutic effects of sulforaphane (SFN) on lipopolysaccharide (LPS)-induced spatial learning and memory dysfunction, and tried to elucidate its relationship with the role of hippocampal brain-derived neurotrophic factor (BDNF)-mammalian target of rapamycin (mTOR) signaling pathway. Intraperitoneal injection of LPS for consecutive 7 days to mice caused abnormal behaviors in Morris water maze test (MWMT), while systemic administration of SFN notably reversed the abnormal behaviors. In addition, hippocampal levels of inflammatory cytokines, synaptic proteins, BDNF-tropomyosin receptor kinase B (TrkB) and mTOR signaling pathways were altered in the processes of LPS-induced cognitive dysfunction and SFN's therapeutic effects. Furthermore, we found that ANA-12 (a TrkB inhibitor) or rapamycin (a mTOR inhibitor) could block the beneficial effects of SFN on LPS-induced cognitive dysfunction, and that hippocampal levels of synaptic proteins, BDNF-TrkB and mTOR signaling pathways were also notably changed. In conclusion, the results of the present study suggest that SFN could elicit improving effects on LPS-induced spatial learning and memory dysfunction, which is likely related to the regulation of hippocampal BDNF-mTOR signaling pathway.

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.