Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

Abstract Title:

Selenium compounds prevent the effects of methylmercury on the in vitro phosphorylation of cytoskeletal proteins in cerebral cortex of young rats.

Abstract Source:

Toxicol Sci. 2005 May;85(1):639-46. Epub 2005 Feb 16. PMID: 15716487

Abstract Author(s):

M B Moretto, C Funchal, G Zeni, R Pessoa-Pureur, J B T Rocha

Article Affiliation:

Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.

Abstract:

In this study we investigated the protective ability of the selenium compounds ebselen and diphenyldiselenide against the effect of methylmercury on the in vitro incorporation of 32P into intermediate filament (IF) proteins from the cerebral cortex of 17-day-old rats. We observed that methylmercury in the concentrations of 1 and 5 microM was able to inhibit the phosphorylating system associated with IF proteins without altering the immunocontent of these proteins. Concerning the selenium compounds, diselenide (1, 15, and 50 microM) did not induce alteration of the in vitro phosphorylation of IF proteins. Conversely, 15 microM diselenide was effective in preventing the toxic effects induced by methylmercury. Otherwise, ebselen induced an altered in vitro phosphorylation of the cytoskeletal proteins in a dose-dependent manner. Ebselen at intermediate concentrations (15 and 30 microM) increased the in vitro phosphorylation. However, at low (5 microM) or high (50 and 100 microM) concentrations it was ineffective in altering the cytoskeletal-associated phosphorylating system. Furthermore, 5 microM ebselen presented a protective effect against the action of methylmercury on the phosphorylating system. In conclusion, our results indicate that the selenium compounds ebselen and diselenide present protective actions toward the alterations of the phosphorylating system associated with the IF proteins induced by methylmercury in slices of the cerebral cortex of rats.

Study Type : Animal Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.