Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

Abstract Title:

Resveratrol improves endothelial function: role of TNF{alpha} and vascular oxidative stress.

Abstract Source:

Arterioscler Thromb Vasc Biol. 2009 Aug;29(8):1164-71. Epub 2009 May 28. PMID: 19478208

Abstract Author(s):

Hanrui Zhang, Jing Zhang, Zoltan Ungvari, Cuihua Zhang

Abstract:

OBJECTIVE: Oxidative stress plays an important role in type 2 diabetes-related endothelial dysfunction. We hypothesized that resveratrol protects against oxidative stress-induced endothelial dysfunction in aortas of diabetic mice by inhibiting tumor necrosis factor alpha (TNFalpha)-induced activation of NAD(P)H oxidase and preserving phosphorylation of endothelial nitric oxide synthase (eNOS). METHODS AND RESULTS: We examined endothelial-dependent vasorelaxation to acetylcholine (ACh) in diabetic mice (Lepr(db)) and normal controls (m Lepr(db)). Relaxation to ACh was blunted in Lepr(db) compared with m Lepr(db), whereas endothelial-independent vasorelaxation to sodium nitroprusside (SNP) was comparable. Resveratrol improved ACh-induced vasorelaxation in Lepr(db) without affecting dilator response to SNP. Impaired relaxation to ACh in Lepr(db) was partially reversed by incubating the vessels with NAD(P)H oxidase inhibitor apocynin and a membrane-permeable superoxide dismutase mimetic TEMPOL. Dihydroethidium (DHE) staining showed an elevated superoxide (O(2)(.-)) production in Lepr(db), whereas both resveratrol and apocynin significantly reduced O(2)(.-) signal. Resveratrol increased nitrite/nitrate levels and eNOS (Ser1177) phosphorylation, and attenuated H(2)O(2) production and nitrotyrosine (N-Tyr) content in Lepr(db) aortas. Furthermore, resveratrol attenuated the mRNA and protein expression of TNFalpha. Genetic deletion of TNFalpha in diabetic mice (db(TNF-)/db(TNF-)) was associated with a reduced NAD(P)H oxidase activity and vascular O(2)(.-) production and an increased eNOS (Ser1177) phosphorylation, suggesting that TNFalpha plays a pivotal role in aortic dysfunction in diabetes by inducing oxidative stress and reducing NO bioavailability. CONCLUSIONS: Resveratrol restored endothelial function in type 2 diabetes by inhibiting TNFalpha-induced activation of NAD(P)H oxidase and preserving eNOS phosphorylation, suggesting the potential for new treatment approaches to promote vascular health in metabolic diseases.

Study Type : Animal Study

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.