Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

Abstract Title:

Regular exercise reverses sensory hypersensitivity in a rat neuropathic pain model: role of endogenous opioids.

Abstract Source:

Anesthesiology. 2011 Apr;114(4):940-8. PMID: 21386701

Abstract Author(s):

Nicola J Stagg, Heriberto P Mata, Mohab M Ibrahim, Erik J Henriksen, Frank Porreca, Todd W Vanderah, T Philip Malan

Article Affiliation:

Graduate Interdisciplinary Program in Pharmacology and Toxiciology, The University of Arizona, Tucson, Arizona, USA.

Abstract:

BACKGROUND: Exercise is often prescribed as a therapy for chronic pain. Short-term exercise briefly increases the production of endogenous analgesics, leading to transient antinociception. In limited studies, exercise produced sustained increases in endogenous opioids, sustained analgesia, or diminished measures of chronic pain. This study tests the hypothesis that regular aerobic exercise leads to sustained reversal of neuropathic pain by activating endogenous opioid-mediated pain modulatory systems.

METHODS: After baseline measurements, the L5 and L6 spinal nerves of male Sprague-Dawley rats were tightly ligated. Animals were randomized to sedentary or 5-week treadmill exercise-trained groups. Thermal and tactile sensitivities were assessed 23 h after exercise, using paw withdrawal thresholds to von Frey filaments and withdrawal latencies to noxious heat. Opioid receptor antagonists were administered by subcutaneous, intrathecal, or intracerebroventricular injection. Opioid peptides were quantified using immunohistochemistry with densitometry.

RESULTS: Exercise training ameliorated thermal and tactile hypersensitivity in spinal nerve-ligated animals within 3 weeks. Sensory hypersensitivity returned 5 days after discontinuation of exercise training. The effects of exercise were reversed by using systemically or intracerebroventricularly administered opioid receptor antagonists and prevented by continuous infusion of naltrexone. Exercise increasedβ-endorphin and met-enkephalin content in the rostral ventromedial medulla and the mid-brain periaqueductal gray area.

CONCLUSIONS: Regular moderate aerobic exercise reversed signs of neuropathic pain and increased endogenous opioid content in brainstem regions important in pain modulation. Exercise effects were reversed by opioid receptor antagonists. These results suggest that exercise-induced reversal of neuropathic pain results from an up-regulation of endogenous opioids.

Study Type : Animal Study
Additional Links
Therapeutic Actions : Exercise : CK(2795) : AC(411)

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.