Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

Abstract Title:

Red wine polyphenols cause growth inhibition and apoptosis in acute lymphoblastic leukaemia cells by inducing a redox-sensitive up-regulation of p73 and down-regulation of UHRF1.

Abstract Source:

Eur J Cancer. 2010 Mar;46(5):983-94. Epub 2010 Jan 13. PMID: 20074931

Abstract Author(s):

Tanveer Sharif, Cyril Auger, Mahmoud Alhosin, Claudine Ebel, Mayada Achour, Nelly Etienne-Selloum, Guy Fuhrmann, Christian Bronner, Valérie B Schini-Kerth

Article Affiliation:

UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.

Abstract:

Several epidemiological studies suggest that a diet rich in fruits and vegetables, which contain high levels of polyphenols, is associated with a reduced risk of cancer. The aim of the present study was to determine whether a red wine polyphenolic extract (RWPs, a rich source of polyphenols; 2.9g/L) affects the proliferation of human lymphoblastic leukaemia cells (Jurkat cells) and, if so, to determine the underlying mechanism. Cell proliferation and viability were determined by the MTS and trypan blue exclusion assays, respectively. Cell cycle analysis, apoptosis activity and oxidative stress levels were assessed by flow cytometry, and the expression of p73, UHRF1 and active caspase-3 by Western blot analysis. RWPs inhibited the proliferation of Jurkat cells and induced G0/G1 cell cycle arrest in a concentration-dependent manner. Moreover, RWPs triggered apoptosis, which is associated with an increased expression level of the pro-apoptotic protein p73 and the active caspase-3. RWPs induced apoptosis confirmed by DNA fragmentation analysis, and this effect was associated with down-regulation of the antiapoptotic protein UHRF1. Furthermore RWPs significantly increased the formation of reactive oxygen species (ROS). Intracellular scavengers of superoxide anions (MnTMPyP, MnTBAP, PEG-SOD) prevented the RWPs-induced formation of ROS and apoptosis, while native extracellular superoxide dismutase (SOD) was without effect. In addition, the effect of RWPs on the expression levels of p73, active caspase-3 and UHRF1 was also prevented by MnTMPyP. Thus, these findings indicate that RWPs induce apoptosis in Jurkat cells by a redox-sensitive mechanism involving the intracellular formation of superoxide anions and consequently the up-regulation of p73 and down-regulation of UHRF1.

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.