Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

n/a
Abstract Title:

Quercetin Attenuates Manganese-Induced Neuroinflammation by Alleviating Oxidative Stress through Regulation of Apoptosis, iNOS/NF-κB and HO-1/Nrf2 Pathways.

Abstract Source:

Int J Mol Sci. 2017 Sep 15 ;18(9). Epub 2017 Sep 15. PMID: 28914791

Abstract Author(s):

Entaz Bahar, Ji-Ye Kim, Hyonok Yoon

Article Affiliation:

Entaz Bahar

Abstract:

Manganese (Mn) is an essential trace element required for the development of human body and acts as an enzyme co-factor or activator for various reactions of metabolism. While essential in trace amounts, excessive Mn exposure can result in toxic accumulations in human brain tissue and resulting extrapyramidal symptoms called manganism similar to idiopathic Parkinson's disease (PD). Quercetin (QCT) has been demonstrated to play an important role in altering the progression of neurodegenerative diseases by protecting against oxidative stress. This study aimed to investigate the protective effect of QCT on Mn-induced neurotoxicity and the underlying mechanism in SK-N-MC human neuroblastoma cell line and Sprague-Dawley (SD) male rat brain. The results showed that Mn treatment significantly decreased the cell viability of SK-N-MC cell and increased the release of lactate dehydrogenase (LDH), which was attenuated by QCT pretreatment at 10 and 20µg/mL. Compared to the Mn alone group, QCT pretreatment significantly attenuated Mn-induced oxidative stress, mitochondrial dysfunction and apoptosis. Meanwhile, QCT pretreatment markedly downregulated the NF-κB but upregulated the heme oxygenase-1 (HO-1) and Nrf2 proteins, compared to the Mn alone group. Our result showed the beneficial effect of QCT on hematological parameters against Mn in rat brain. QCT decrease reactive oxygen species (ROS) and protein carbonyl levels and increased Cu/Zn-superoxide dismutase (SOD) activity induced in Mn-treated rats. QCT administration caused a significant reduction in the Mn-induced neuroinflammation by inhibiting the expression of inflammatory markers such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). QCT lowered the Mn elevated levels ofvarious downstream apoptotic markers, including Bax, cytochrome c, cleaved caspase-3 and polymerase-1 (PARP-1), while QCT treatment upregulated anti-apoptotic Bcl-2 proteins and prevented Mn-induced neurodegeneration. Furthermore, administration of QCT (25 and 50 mg/kg) to Mn-exposed rats showed improvement of histopathological alteration in comparison to Mn-treated rats. Moreover, administration of QCT to Mn-exposed rats showed significant reduction of 8-hydroxy-2'-deoxyguanosine (8-OHdG), Bax, activated caspase-3 and PARP-1 immunoreactivity. These results indicate that QCT could effectivelyinhibit Mn induced apoptosis and inflammatory response in SK-N-MC cells and SD rats, which may involve the activation of HO-1/Nrf2 and inhibition of NF-κB pathway.

Study Type : Animal Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.