Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

n/a
Abstract Title:

Morin attenuates doxorubicin-induced heart and brain damage by reducing oxidative stress, inflammation and apoptosis.

Abstract Source:

Biomed Pharmacother. 2018 Jul 2 ;106:443-453. Epub 2018 Jul 2. PMID: 29990832

Abstract Author(s):

Muslum Kuzu, Fatih Mehmet Kandemir, Serkan Yildirim, Sefa Kucukler, Cuneyt Caglayan, Erdinc Turk

Article Affiliation:

Muslum Kuzu

Abstract:

Doxorubicin (DOX) is an effective antineoplastic agent of the anthracycline group. However, as with most anticancer drugs, they cause some toxic effects, including major cardiotoxicity and cognitive impairment. In this study, protective effects of morin against DOX-induced cardiotoxicity and neurotoxicity in rats were investigated. Morin was orally administered to rats at a dose of 50 and 100 mg/kg body weight for 10 days. DOX was administered 40 mg/kg body weight by single dose intraperitoneal injection on the 8th day of the study. Both the levels of glutathione (GSH) and malondialdehyde (MDA) were assessed and enzyme activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were assessed to determine the protective effect of morin against oxidative stress. To determine the anti-inflammatory effect, the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), nuclear factor kappa B (NF-κB) were assessed in the heart and brain tissues. Lactate dehydrogenase (LDH) and creatine kinase isoenzyme-MB (CKMB) activities, which are cardiac function markers, and cardiac troponin-I (cTn-I) levels were also determined. Anti-apoptotic effect was determined by anti-apoptotic protein B-cell lymphoma-2 (Bcl-2) and pro-apoptotic protein cysteine aspartate specific protease-3 (caspase-3) changes. The regulatory role of morin in signal transduction in the brain tissue was assigned with the determination of amount of acetylcholinesterase (AChE), and its healing effect on the central nervous system was determined with imuinohistochemicaldetection of glial fibrillar acidic protein (GFAP) level. Histopathological evaluation of heart and brain tissues was performed in all groups.

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.