Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

n/a

Abstract Title:

Mangiferin induces islet regeneration in aged mice through regulating p16INK4a.

Abstract Source:

Int J Mol Med. 2018 Mar 1. Epub 2018 Mar 1. PMID: 29512742

Abstract Author(s):

Hailian Wang, Xia He, Tiantian Lei, Yilong Liu, Guoli Huai, Minghan Sun, Shaoping Deng, Hongji Yang, Rongsheng Tong, Yi Wang

Article Affiliation:

Hailian Wang

Abstract:

Previous studies by our group on mangiferin demonstrated that it exerts an anti‑hyperglycemic effect through the regulation of cell cycle proteins in 3‑month‑old, partially pancreatectomized (PPx) mice. However, β‑cell proliferation is known to become severely restricted with advanced age. Therefore, it is unknown whether mangiferin is able to reverse the diabetic condition and retain β‑cell regeneration capability in aged mice. In the present study, 12‑month‑old C57BL/6J mice that had undergone PPx were subjected to mangiferin treatment (90 mg/kg) for 28 days. Mangiferin‑treated aged mice exhibited decreased blood glucose levels and increased glucosetolerance, which was accompanied with higher serum insulin levels when compared with those in untreated PPx control mice. In addition, islet hyperplasia, elevated β‑cell proliferation and reduced β‑cell apoptosis were also identified in the mice that received mangiferin treatment. Further studies on the mRNA transcript and protein expression levels indicated comparatively increased levels of cyclins D1 and D2 and cyclin‑dependent kinase 4 in mangiferin‑treated mice, while the levels of p27Kip1 and p16INK4a were decreased relative to those in the untreated PPx controls. Of note, mangiferin treatment improved the proliferation rate of islet β‑cells in adult mice overexpressing p16INK4a, suggesting that mangiferin induced β‑cell proliferation via the regulation of p16INK4a. In addition, the mRNA transcription levels of critical genes associated with insulin secretion, including pancreatic and duodenal homeobox 1, glucose transporter 2 and glucokinase, were observed to be upregulated after mangiferin treatment. Taken together, it was indicated that mangiferin treatment significantly induced β‑cell proliferation and inhibited β‑cell apoptosis by regulating cell cycle checkpoint proteins. Furthermore, mangiferin was also demonstrated to regulate genes associated with insulin secretion. Collectively these, results suggest the therapeutic potential of mangiferin in the treatment of diabetes in aged individuals.

Study Type : Animal Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.