Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

Abstract Title:

Stem cell proliferation under low intensity laser irradiation: a preliminary study.

Abstract Source:

Lasers Surg Med. 2008 Aug;40(6):433-8. PMID: 18649378

Abstract Author(s):

Fernanda de P Eduardo, Daniela F Bueno, Patricia M de Freitas, Márcia Martins Marques, Maria Rita Passos-Bueno, Carlos de P Eduardo, Mayana Zatz

Article Affiliation:

Hospital Israelita Albert Einstein, Unit of Bone Marrow Transplantation, São Paulo 05651-901, SP, Brazil.

Abstract:

BACKGROUND AND OBJECTIVES: Phototherapy with low intensity laser irradiation has shown to be effective in promoting the proliferation of different cells. The aim of this in vitro study was to evaluate the potential effect of laser phototherapy (660 nm) on human dental pulp stem cell (hDPSC) proliferation.

STUDY DESIGN/MATERIALS AND METHODS: The hDPSC cell strain was used. Cells cultured under nutritional deficit (10% FBS) were either irradiated or not (control) using two different power settings (20 mW/6 seconds to 40 mW/3 seconds), with an InGaAIP diode laser. The cell growth was indirectly assessed by measuring the cell mitochondrial activity through the MTT reduction-based cytotoxicity assay.

RESULTS: The group irradiated with the 20 mW setting presented significantly higher MTT activity at 72 hours than the other two groups (negative control--10% FBS--and lased 40 mW with 3 seconds exposure time). After 24 hours of the first irradiation, cultures grown under nutritional deficit (10% FBS) and irradiated presented significantly higher viable cells than the non-irradiated cultures grown under the same nutritional conditions.

CONCLUSIONS: Under the conditions of this study it was possible to conclude that the cell strain hDPSC responds positively to laser phototherapy by improving the cell growth when cultured under nutritional deficit conditions. Thus, the association of laser phototherapy and hDPSC cells could be of importance for future tissue engineering and regenerative medicine. Moreover, it opens the possibility of using laser phototherapy for improving the cell growth of other types of stem cells.

Study Type : In Vitro Study

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.