Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

Abstract Title:

Alleviation of enhanced oxidative stress and oxygen consumption of L-thyroxine induced hyperthyroid rat liver mitochondria by vitamin E and curcumin.

Abstract Source:

Chem Biol Interact. 2008 May 28;173(2):105-14. Epub 2008 Mar 10. PMID: 18377885

Abstract Author(s):

U Subudhi, K Das, B Paital, S Bhanja, G B N Chainy

Article Affiliation:

Department of Biotechnology, Utkal University, Bhubaneswar 751004, Orissa, India.

Abstract:

In the present study, the role of vitamin E and curcumin on hyperthyroidism induced mitochondrial oxygen consumption and oxidative damage to lipids and proteins of rat liver are reported. Adult male rats were rendered hyperthyroid by administration of 0.0012% l-thyroxine in their drinking water, while vitamin E (200 mg/kg body weight) and curcumin (30 mg/kg body weight) were supplemented orally for 30 days. Hyperthyroidism induced elevation in serum aspartate aminotransferase and alanine aminotransferase activities were reduced significantly in response to vitamin E and curcumin treatment. On the other hand, effects of vitamin E and curcumin on hyperthyroidism induced hepatic complexes I and II mediated respiration were found to be different. While curcumin administration ameliorates hyperthyroidism induced state 3 and state 4 respiration in complex I, vitamin E treatment was effective only in reducing state 4 respiration of complex I. On the contrary, curcumin administration was ineffective in modulating hyperthyroidism induced complex II respiration, but vitamin E treatment to hyperthyroid rats resulted in augmentation of complex II respiration both at state 3 and state 4 level. Moreover, vitamin E and curcumin treatment resulted in alleviation of hyperthyroidism induced lipid peroxidation. Enhanced protein carbonylation in hyperthyroid rats is decreased only in response to simultaneous supplementation of vitamin E and curcumin. Above findings suggest that both vitamin E and curcumin have differential regulation on complexes I and II mediated mitochondrial respiration and have a protective role against L-thyroxine induced hepatic dysfunction and oxidative stress.

Study Type : Animal Study
Additional Links
Problem Substances : Thyroxine : CK(146) : AC(24)
Adverse Pharmacological Actions : Oxidant : CK(122) : AC(48)

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.