Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

n/a
Article Publish Status: FREE
Abstract Title:

Grape Seed Proanthocyanidin Extract Inhibits Human Esophageal Squamous Cancerous Cell Line ECA109 via the NF-B Signaling Pathway.

Abstract Source:

Mediators Inflamm. 2018 ;2018:3403972. Epub 2018 Dec 17. PMID: 30647533

Abstract Author(s):

Fangming Guo, Yunhua Hu, Qiang Niu, Yu Li, Yusong Ding, Rulin Ma, Xianhua Wang, Shugang Li, Jianxin Xie

Article Affiliation:

Fangming Guo

Abstract:

Esophageal squamous cell carcinoma is the most common type of squamous cell carcinoma. Grape seed proanthocyanidin extract (GSPE) is considered to exhibit anticancer activity against several different types of cancer. We aimed to determine whether GSPE inhibited esophageal squamous cancerous cells and the possible involvement of NF-B in this process. The human esophageal squamous cancer cell line ECA109 was treated with GSPE (0-80 g/mL) and BAY11-7082 (10 mol/L) for 12, 24, and 48 h. The MTT assay was used to determine cell proliferation; alterations in cell apoptosis were detected by flow cytometry; levels of inflammatory factors interleukin-6 and cyclooxygenase-2 and apoptotic proteins Bax/Bcl-2 were measured by ELISA; qRT-PCR and western blots were used to examine the activation of caspase-3 and NF-B signaling. GSPE inhibited the proliferation of ECA109 cells and induced cellular apoptosis in a time- and dose-dependent manner. ELISA results showed that GSPE and BAY11-7082 reduced the secretion of inflammatory cytokines interleukin-6 and cyclooxygenase-2. The results of PCR and western blotting indicated that GSPE and BAY11-7082 activated caspase-3 and attenuated the activation of the NF-B signaling pathway. GSPE induced apoptosis in ECA109 cells and inhibited ECA109 cell proliferation via a reduction in the secretion of inflammatory cytokines. This mechanism may be related to the attenuation of NF-B activity and the sensitization of caspase-3.

Study Type : In Vitro Study

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.