Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

Abstract Title:

Genistein inhibits MDA-MB-231 triple-negative breast cancer cell growth by inhibiting NF-κB activity via the Notch-1 pathway.

Abstract Source:

Int J Mol Med. 2012 Aug ;30(2):337-43. Epub 2012 May 9. PMID: 22580499

Abstract Author(s):

Hong Pan, Wenbin Zhou, Wei He, Xiaoan Liu, Qiang Ding, Lijun Ling, Xiaoming Zha, Shui Wang

Article Affiliation:

Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, P.R. China.

Abstract:

Genistein (Gen) has been reported as a protective factor against breast cancer. However, the molecular mechanism by which Gen elicits its effects on triple-negative breast cancer cells has not been fully elucidated. In our study, the breast cancer cell line MDA-MB-231 was selected to determine the action of Gen on triple-negative breast cancer cells. MTT assay, flow cytometric analysis, siRNA transfection, western blotting and nuclear factor-κB (NF-κB) activation-nuclear translocation assay were used to address the role of NF-κB activity and the Notch-1 signaling pathway on the effects of Gen. Our study revealed that Gen elicited a dramatic effect on cell growth inhibition, in a dose-dependent and time-dependent manner. Treatment ofMDA-MB-231 cells with 0, 5, 10 or 20 µM Gen induced apoptosis of 6.78, 18.98, 30.45 and 60.64%, respectively. Exposure of MDA-MB-231 cells to Gen also resulted in G2/M phase accumulation of cells corresponding to 4.93, 12.54, 18.93 and 30.95%, respectively. Furthermore, our data demonstrated for the first time that Gen inhibited the growth of MDA-MB-231 triple-negative breast cancer cells by inhibiting NF-κB activity via the Nocth-1 signaling pathway in a dose-dependent manner. We also found that Gen downregulated the expression of cyclin B1, Bcl-2 and Bcl-xL, possibly mediated by NF-κB activation via the Notch-1 signaling pathway. In conclusion, our results suggest that inhibition of NF-κB activity via the Notch-1 pathway may be a novel mechanism by which Gen suppresses the growth of triple-negative breast cancer cells. Further preclinical and clinical studies are warranted to further investigate the application of Gen for the treatment of triple-negative breast cancer.

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.