Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

n/a
Abstract Title:

Foeniculum vulgare extract and its constituent, trans-anethole, inhibit UV-induced melanogenesis via ORAI1 channel inhibition.

Abstract Source:

J Dermatol Sci. 2016 Dec ;84(3):305-313. Epub 2016 Sep 28. PMID: 27712859

Abstract Author(s):

Joo Hyun Nam, Dong-Ung Lee

Article Affiliation:

Joo Hyun Nam

Abstract:

BACKGROUND: Ultraviolet radiation exposure is the most important cause of extrinsic skin aging (photoaging), which causes skin wrinkling and hyperpigmentation. Although many factors are involved in the photoaging process, calcium release-activated calcium channel protein 1 (ORAI1) has been reported to be involved in UV-induced melanogenesis.

OBJECTIVE: The aim of the present study was to find inhibitory effects of the extract of Foeniculum vulgare (fennel) fruits on ORAI1 ion channels and UV-induced melanogenesis in melanoma cells and to identify its active constituents.

METHODS: Active compounds were isolated and quantitatively analyzed. An electrophysiological assay was performed by using the whole-cell patch-clamp technique. Intracellular free calcium concentration was measured by Fura-2. Tyrosinase activity was evaluated by levodopa colorimetry. Effects of the most active compound on cell viability of murine B16F10 melanoma cells and inhibition of melanin content after UVB irradiation were determined.

RESULTS: F. vulgare fruits extract and its hexane fraction strongly blocked ORAI1 currents and tyrosinase activity and significantly inhibited UV-induced melanogenesis. Of the 13 compounds isolated from the hexane fraction, trans-anethole (TA) exhibited inhibitory effects on ORAI1 (IC50=8.954±1.36μM) and increased cytoplasmic Ca(2+) concentrations in response. TA inhibited UV-induced melanogenesis without affecting tyrosinase activity.

CONCLUSION: Our findings suggest that the fruits extract of F. vulgare and its active constituent, TA, provide a possible novel approach for treating and preventing UV-induced melanogenesis.

Study Type : In Vitro Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.