Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

n/a
Article Publish Status: FREE
Abstract Title:

Dehydroeburicoic Acid from Antrodia camphorata Prevents the Diabetic and Dyslipidemic State via Modulation of Glucose Transporter 4, Peroxisome Proliferator-Activated Receptorα Expression and AMP-Activated Protein Kinase Phosphorylation

Abstract Source:

Int J Mol Sci. 2016 Jun 3 ;17(6). Epub 2016 Jun 3. PMID: 27271603

Abstract Author(s):

Yueh-Hsiung Kuo, Cheng-Hsiu Lin, Chun-Ching Shih

Article Affiliation:

Yueh-Hsiung Kuo

Abstract:

This study investigated the potential effects of dehydroeburicoic acid (TT), a triterpenoid compound from Antrodia camphorata, in vitro and examined the effects and mechanisms of TT on glucose and lipid homeostasis in high-fat-diet (HFD)-fed mice. The in vitro study examined the effects of a MeOH crude extract (CruE) of A. camphorata and Antcin K (AnK; the main constituent of fruiting body of this mushroom) on membrane glucose transporter 4 (GLUT4) and phospho-Akt in C2C12 myoblasts cells. The in vitro study demonstrated that treatment with CruE, AnK and TT increased the membrane levels of glucose transporter 4 (GLUT4) and phospho-Akt at different concentrations. The animal experiments were performed for 12 weeks. Diabetic mice were randomly divided into six groups after 8 weeks of HFD-induction and treated with daily oral gavage doses of TT (at three dose levels), fenofibrate (Feno) (at 0.25 g/kg body weight), metformin (Metf) (at 0.3 g/kg body weight) or vehicle for another 4 weeks while on an HFD diet. HFD-fed mice exhibited increased blood glucose levels. TT treatment dramatically lowered blood glucose levels by 34.2%~43.4%, which was comparable to the antidiabetic agent-Metf (36.5%). TT-treated mice reduced the HFD-induced hyperglycemia, hypertriglyceridemia, hyperinsulinemia, hyperleptinemia, and hypercholesterolemia. Membrane levels of GLUT4 were significantly higher in CruE-treated groups in vitro. Skeletal muscle membrane levels of GLUT4 were significantly higher in TT-treated mice. These groups of mice also displayed lower mRNA levels of glucose-6-phosphatase (G6 Pase), an inhibitor of hepatic glucose production. The combination of these agents produced a net hypoglycemic effect in TT-treated mice. TT treatment enhanced the expressions of hepatic and skeletal muscle AMP-activated protein kinase (AMPK) phosphorylation in mice. TT-treated mice exhibited enhanced expression of hepatic fatty acid oxidation enzymes, including peroxisome proliferator-activated receptorα (PPARα) and increased mRNA levels of carnitine palmitoyl transferase Ia (CPT-1a). These mice also exhibited decreased expression levels of lipogenic fatty acid synthase (FAS) in liver and adipose tissue and reduced mRNA levels of hepatic adipocyte fatty acid binding protein 2 (aP2) and glycerol-3-phosphate acyltransferase (GPAT). These alterations resulted in a reduction in fat stores within the liver and lower triglyceride levels in blood. Our results demonstrate that TT is an excellent therapeutic approach for the treatment of type 2 diabetes and hypertriglyceridemia.

Study Type : Animal Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.