Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

Abstract Title:

Activation of peroxisome proliferator-activated receptor-gamma by curcumin blocks the signaling pathways for PDGF and EGF in hepatic stellate cells.

Abstract Source:

Lab Invest. 2008 May;88(5):529-40. Epub 2008 Mar 10. PMID: 18332871

Abstract Author(s):

Jianguo Lin, Anping Chen

Article Affiliation:

Department of Pathology, School of Medicine, Saint Louis University, St Louis, MO 63104, USA.

Abstract:

During hepatic fibrogenesis, reduction in the abundance of peroxisome proliferator-activated receptor-gamma (PPARgamma) is accompanied by activation of mitogenic signaling for platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) in hepatic stellate cells (HSCs), the major effector cells. We previously reported that curcumin, the yellow pigment in curry, interrupted PDGF and EGF signaling, stimulated PPARgamma gene expression, and enhanced its activity, leading to inhibition of cell proliferation of activated HSC in vitro and in vivo. The aim of this study was to elucidate the underlying mechanisms. We hypothesized that the enhancement of PPARgamma activity by curcumin might result in the interruption of PDGF and EGF signaling. Our experiments demonstrated that curcumin, with different treatment strategies, showed different efficiencies in the inhibition of PDGF- or EGF-stimulated HSC proliferation. Further experiments observed that curcumin dose dependently reduced gene expression of PDGF and EGF receptors (ie, PDGF-betaR and EGFR), which required PPARgamma activation. The activation of PPARgamma by its agonist suppressed pdgf-betar and egfr expression in HSC. In addition, curcumin reduced the phosphorylation levels of PDGF-betaR and EGFR, as well as their downstream signaling cascades, including ERK1/2 and JNK1/2. Moreover, activation of PPARgamma induced gene expression of glutamate-cysteine ligase, the rate-limiting enzyme in de novo synthesis of the major intracellular antioxidant, glutathione. De novo synthesis of glutathione was required for curcumin to suppress pdgf-betar and egfr expression in activated HSCs. Our results collectively demonstrated that enhancement of PPARgamma activity by curcumin interrupted PDGF and EGF signaling in activated HSCs by reducing the phosphorylation levels of PDGF-betaR and EGFR, and by suppressing the receptor gene expression. These results provide novel insights into the mechanisms of curcumin in the inhibition of HSC activation and the suppression of hepatic fibrogenesis.

Study Type : In Vitro Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.