Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

Abstract Title:

The chemopreventive compound curcumin is an efficient inhibitor of Epstein-Barr virus BZLF1 transcription in Raji DR-LUC cells.

Abstract Source:

Mol Carcinog. 2002 Mar;33(3):137-45. PMID: 11870879

Abstract Author(s):

Manfred Hergenhahn, Ubaldo Soto, Annette Weninger, Axel Polack, Chih-Hung Hsu, Ann-Lii Cheng, Frank Rösl

Article Affiliation:

Division of Genetic Alterations in Carcinogenesis, Deutsches Krebsforschungszentrum, Heidelberg, Germany.

Abstract:

To characterize the effects of inhibitors of Epstein-Barr virus (EBV) reactivation, we established Raji DR-LUC cells as a new test system. These cells contain the firefly luciferase (LUC) gene under the control of an immediate-early gene promoter (duplicated right region [DR]) of EBV on a self-replicating episome. Luciferase induction thus serves as an intrinsic marker indicative for EBV reactivation from latency. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) induced the viral key activator BamH fragment Z left frame 1 (BZLF1) protein ("ZEBRA") in this system, as demonstrated by induction of the BZLF1 protein-responsive DR promoter upstream of the luciferase gene. Conversely, both BZLF1 protein and luciferase induction were inhibited effectively by the chemopreventive agent curcumin. Semiquantitative reverse transcriptase (RT)-polymerase chain reaction (PCR) further demonstrated that the EBV inducers TPA, sodium butyrate, and transforming growth factor-beta (TGF-beta) increased levels of the mRNA of BZLF1 mRNA at 12, 24, and 48 h after treatment in these cells. TPA treatment also induced luciferase mRNA with similar kinetics. Curcumin was found to be highly effective in decreasing TPA-, butyrate-, and TGF-beta-induced levels of BZLF1 mRNA, and of TPA-induced luciferase mRNA, indicating that three major pathways of EBV are inhibited by curcumin. Electrophoretic mobility shift assays (EMSA) showed that activator protein 1 (AP-1) binding to a cognate AP-1 sequence was detected at 6 h and could be blocked by curcumin. Protein binding to the complete BZLF1 promoter ZIII site (ZIIIA+ZIIIB) demonstrated several specific complexes that gave weak signals at 6 h and 12 h but strong signals at 24 h, all of which were reduced after application of curcumin. Autostimulation of BZLF1 mRNA induction through binding to the ZIII site at 24 h was confirmed by antibody-induced supershift analysis. The present results confirm our previous finding that curcumin is an effective agent for inhibition of EBV reactivation in Raji DR-CAT cells (carrying DR-dependent chloramphenicol acetyltransferase), and they show for the first time that curcumin inhibits EBV reactivation mainly through inhibition of BZLF1 gene transcription.

Study Type : In Vitro Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.