Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

Abstract Title:

Effect of cinnamon oil on icaA expression and biofilm formation by Staphylococcus epidermidis.

Abstract Source:

Appl Environ Microbiol. 2009 Nov;75(21):6850-5. Epub 2009 Sep 11. PMID: 19749058

Abstract Author(s):

Titik Nuryastuti, Henny C van der Mei, Henk J Busscher, Susi Iravati, Abu T Aman, Bastiaan P Krom

Article Affiliation:

Department of BioMedical Engineering, University Medical Center Groningen and University of Groningen, P.O. Box 196, 9700 AD Groningen, The Netherlands.

Abstract:

Staphylococcus epidermidis is notorious for its biofilm formation on medical devices, and novel approaches to prevent and kill S. epidermidis biofilms are desired. In this study, the effect of cinnamon oil on planktonic and biofilm cultures of clinical S. epidermidis isolates was evaluated. Initially, susceptibility to cinnamon oil in planktonic cultures was compared to the commonly used antimicrobial agents chlorhexidine, triclosan, and gentamicin. The MIC of cinnamon oil, defined as the lowest concentration able to inhibit visible microbial growth, and the minimal bactericidal concentration, the lowest concentration required to kill 99.9% of the bacteria, were determined using the broth microdilution method and plating on agar. A checkerboard assay was used to evaluate the possible synergy between cinnamon oil and the other antimicrobial agents. The effect of cinnamon oil on biofilm growth was studied in 96-well plates and with confocal laser-scanning microscopy (CLSM). Biofilm susceptibility was determined using a metabolic 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Real-time PCR analysis was performed to determine the effect of sub-MIC concentrations of cinnamon oil on expression of the biofilm-related gene, icaA. Cinnamon oil showed antimicrobial activity against both planktonic and biofilm cultures of clinical S. epidermidis strains. There was only a small difference between planktonic and biofilm MICs, ranging from 0.5 to 1% and 1 to 2%, respectively. CLSM images indicated that cinnamon oil is able to detach and kill existing biofilms. Thus, cinnamon oil is an effective antimicrobial agent to combat S. epidermidis biofilms.

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.