Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

n/a

Abstract Title:

Carnosic acid attenuates RANKL-induced oxidative stress and osteoclastogenesis via induction of Nrf2 and suppression of NF-κB and MAPK signalling.

Abstract Source:

J Mol Med (Berl). 2017 Oct ;95(10):1065-1076. Epub 2017 Jul 4. PMID: 28674855

Abstract Author(s):

Dinesh Thummuri, V G M Naidu, Pradip Chaudhari

Article Affiliation:

Dinesh Thummuri

Abstract:

: Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a redox-sensitive transcription factor, which plays an important role in the cellular defense against oxidative stress by induction of anti-oxidant and cytoprotective enzymes. In the current study, we sought to investigate the osteoprotective effect of carnosic acid (CA), a phenolic (catecholic) diterpene. It is widely identified for its electrophilic nature under oxidative stress conditions and thus anticipated to counter osteoporosis by facilitation of Nrf2 signalling. Osteoclast differentiation was induced by incubation of RAW 264.7 (mouse macrophage) cells and mouse bone marrow macrophages (BMMs) in the presence of receptor activator of NF-κB ligand (RANKL) (100 ng/ml). After treatment, osteoclastogenesis was assessed using tartrate-resistant acid phosphatase (TRAP) assay. We observed that 6 h pretreatment with CA (1.25, 2.5, 5 μM) decreased RANKL-induced osteoclast formation and abolished RANKL-induced ROS generation by activating Nrf2 and its transcriptional targets. Further, CA also inhibited RANKL-induced activation of NF-κB and MAPK signalling. RANKL-induced mRNA expression of osteoclast related genes and transcription factors was also diminished by CA. In vivo osteolysis was developed in C57BL/6 male mice using lipopolysaccharide (LPS). Consistent with in vitro results, in vivo μ-CT analysis of femurs showed that bone mineral density (BMD), bone mineral content (BMC), and bone architecture parameters such as trabecular thickness (Tb.Th) and trabecular space (Tb.Sp) were positively modulated by CA in LPS-injected mice. The results obtained in this study support that CA inhibits RANKL-induced osteoclastogenesis by maintaining redox homeostasis through modulation of Nrf2 and NF-κB pathways.

KEY MESSAGES: Carnosic acid (CA) inhibits RANKL-induced osteoclastogenesis. CA inhibits RANKL-induced oxidative stress by upregulating Nrf2 transcriptional targets. CA attenuates RANKL-induced NF-κB and MAPK signalling activation. CA decreases NFATc1 and c-Fos expression. In vivo μ-CT analysis reveals that CA prevents bone loss in LPS-injected mice.

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.