Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

Abstract Title:

Protective effects of caffeic acid phenethyl ester on doxorubicin-induced cardiotoxicity in rats.

Abstract Source:

Am J Ind Med. 2010 Sep 30. Epub 2010 Sep 30. PMID: 14745846

Abstract Author(s):

Ersin Fadillioglu, Emin Oztas, Hasan Erdogan, Murat Yagmurca, Sadik Sogut, Muharrem Ucar, M Kemal Irmak

Article Affiliation:

Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey. efadillioglu@yahoo.com

Abstract:

The prevention of doxorubicin (DXR)-induced cardiotoxicity may be helpful to improve future DXR therapy. The aim of this study was to investigate the cardio-protective effects of caffeic acid phenethyl ester (CAPE), an antioxidant agent, on DXR-induced cardiotoxicity. Rats were divided into three groups and treated with saline, DXR and DXR + CAPE. Rats were treated with CAPE (10 micromol x kg(-1) day(-1) i.p.) or saline starting 2 days before a single dose of DXR (20 mg x kg(-1) i.p.). Ten days later, haemodynamic measurements were performed and the hearts were excised for biochemical analyses and microscopic examination. The heart rate and mean blood pressure were higher and the pulse pressure was lower in the DXR group than in the other two groups. The administration of DXR alone resulted in higher myeloperoxidase activity, lipid peroxidation and protein carbonyl content than in the other groups. The activities of superoxide dismutase and catalase were higher in DXR and DXR + CAPE groups than in the saline group. Rats in the DXR + CAPE group had increased catalase activity in comparison with the DXR group and high glutathione peroxidase activity in comparison with the other two groups. There was severe disruption of mitochondrial fi ne structure in the electron microscopy of the DXR group. In contrast, myocardial microscopy appeared nearly normal in the DXR + CAPE group (as de fi ned at the electron microscopic level). In light of these in vivo haemodynamic, enzymatic and morphological results, we conclude that CAPE pretreatment significantly attenuated DXR-induced cardiac injury, possibly with its antioxidant effects.

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.