Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

Article Publish Status: FREE
Abstract Title:

Vitamin D modifies the associations between circulating betatrophin and cardiometabolic risk factors among youths at risk for metabolic syndrome.

Abstract Source:

Cardiovasc Diabetol. 2016 Oct 6 ;15(1):142. Epub 2016 Aug 6. PMID: 27716289

Abstract Author(s):

Junling Fu, Cong Hou, Lujiao Li, Dan Feng, Ge Li, Mingyao Li, Changhong Li, Shan Gao, Ming Li

Article Affiliation:

Junling Fu

Abstract:

BACKGROUND: Betatrophin has been recently reported to play a role in glucose homeostasis by inducing beta-cell proliferation in mice. However, studies in human are inconsistent. As a nutritionally-regulated liver-enriched factor, we hypothesize that betatrophin might be regulated by vitamin D, and ignorance of vitamin D status may explain the discrepancy in previous human studies. The aims of this study were to assess the association between circulating betatrophin and glucose homeostasis as well as other cardiometabolic variables in a cohort of youths at risk for metabolic syndrome and test the possible influence of vitamin D status on the association.

METHODS: 559 subjects aged 14-28 years were recruited from Beijing children and adolescents metabolic syndrome study. All underwent a 2 h-oral glucose tolerance test. Serum levels of betatrophin, 25-hydroxy-vitamin D as well as adipokines including adiponectin and fibroblast growth factor 21 (FGF21) were measured by immunoassays. The relationships between betatrophin and insulin resistance, beta-cell function, other cardiometabolic variables and vitamin D status were evaluated.

RESULTS: Participants in the highest quartile of betatrophin levels had the highest levels of total cholesterol (P < 0.001), triglyceride (P < 0.001) and low-density lipoprotein cholesterol (P < 0.001) and the lowest levels of vitamin D (P = 0.003). After stratification by vitamin D status, betatrophin in subjects with vitamin D deficiency were positively correlated with unfavorable metabolic profiles including high blood pressures, dyslipidemia and hyperglycemia, whereas betatrophin inthose with higher vitamin D levels only showed negative association with fasting insulin, 2 h-insulin, and insulin resistance. In addition, adiponectin and FGF21 demonstrated the expected associations with metabolic parameters.

CONCLUSIONS: Elevated betatrophin levels were associated with cardiometabolic risk factors in this young population, but the association was largely dependent on vitamin D status. These findings may provide valuable insights in the regulation of betatrophin and help explain the observed discrepancies in literature.

Study Type : Human Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.