Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

n/a
Article Publish Status: FREE
Abstract Title:

Local Delivery ofβ-Elemene Improves Locomotor Functional Recovery by Alleviating Endoplasmic Reticulum Stress and Reducing Neuronal Apoptosis in Rats with Spinal Cord Injury.

Abstract Source:

Cell Physiol Biochem. 2018 ;49(2):595-609. Epub 2018 Aug 30. PMID: 30165357

Abstract Author(s):

Jingyu Wang, Heyangzi Li, Yucheng Ren, Ying Yao, Jue Hu, Mingzhi Zheng, Yuemin Ding, Ying-Ying Chen, Yueliang Shen, Lin-Lin Wang, Yongjian Zhu

Article Affiliation:

Jingyu Wang

Abstract:

BACKGROUND/AIMS: Spinal cord injury (SCI) is a serious global problem that leads to permanent motor and sensory deficits. This study explores the anti-apoptotic and neuroprotective effects of the natural extractβ-elemene in vitro and in a rat model of SCI.

METHODS: CCK-8 assay was used to evaluate cell viability and lactate dehydrogenase assay was used to evaluate cytotoxicity. A model of cell injury was established using cobalt chloride. Apoptosis was evaluated using a fluorescence-activated cell sorting assay of annexin V-FITC and propidium iodide staining. A rat SCI model was created via the modified Allen's method and Basso, Beattie, and Bresnahan (BBB) scores were used to assess locomotor function. Inflammatory responses were assessed via enzyme-linked immunosorbent assay (ELISA). Apoptotic and surviving neurons in the ventral horn were respectively observed via terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and Nissl staining. Western blotting was used to measure protein expression.

RESULTS: β-elemene (20 μg/ml) promoted cell viability by activating phosphorylation of the PI3K-AKT-mTOR pathway. β-elemene reduced CoCl2-induced cellular death and apoptosis by suppressing the expression levels of CHOP, cleaved-caspase 12, 78-kilodalton glucose-regulated protein, cleaved-caspase 3, and the Bax/Bcl-2 ratio. In the rat model of SCI, Nissl and TUNEL staining showed that β-elemene promoted motor neuron survival and reduced neuronal apoptosis in the spinal cord ventral horn. BBB scores showed that β-elemene significantly promoted locomotor behavioral recovery after SCI. In addition, β-elemene reduced the ELISA-detected secretion of interleukin (IL)-6 and IL-1β.

CONCLUSION: β-elemene reduces neuronal apoptosis by alleviating endoplasmic reticulum stress in vitro and in vivo. In addition, β-elemene promotes locomotor function recovery and tissue repair in SCI rats. Thus, our study provides a novel encouraging strategy for the potential treatment of β-elemene in SCI patients.

Study Type : Animal Study, In Vitro Study
Additional Links
Pharmacological Actions : Apoptotic : CK(5217) : AC(3846)

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.